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Abstract A novel approach for the simulation of host–guest
systems by systematically scanning the host molecule’s
orientations within the guest cavity is presented along with a
thermodynamic strategy for determining preferential binding
modes and corresponding optimal interaction energies be-
tween host and guest molecules. By way of example, the
elution order of hexabromocyclododecane stereoisomers from
high performance liquid chromatography separation on a
permethylated β-cyclcodextrin stationary phase has been
computed using classical molecular dynamics simulations
with the explicit solvents water and acetonitrile. Comparison
of estimated with experimental separation data reveals
remarkable squared coefficients of correlation with R2=0.87
and a very high correlation RLOO2 ¼ 0:72 using the leave-
one-out cross-validation method and water as solvent. In
particular, the approach presented shapes up as very robust in
terms of the evaluated time range under consideration,
reflecting well thermodynamic equilibria. These and further
observations correlating with experimental results suggest the
suitability of the underlying force fields and our multi-mode
approach for the estimation of relative binding affinities for
host–guest systems with unknown binding modes.
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Introduction

High performance liquid chromatography (HPLC) is a well-
established method in analytical chemistry used for the
decomposition of chemical mixtures. Basically, the chro-
matographic elution order of analytes depends only on their
binding affinities to the stationary phase. From a thermo-
dynamic point of view, the binding affinity is considered as
the ratio of the concentrations of two states of a host–guest
system at chemical equilibrium: the bound and the unbound
state. The affinity can in turn be derived from the free
energy difference of both states incorporating the system’s
inner energy difference as well as its entropic difference,
which can both be computed by molecular dynamics (MD)
simulations. In recent years, a number of different methods
to estimate binding free energies or elution orders have
been presented. A mathematical model for estimating
enantiomeric resolutions from molecular mechanics simu-
lations of chiral separations was developed by Zhang et al.
[1]. Issaraseriruk et al. [2] derived binding free energies for
enantiomeric separation with a combination of molecular
docking using AutoDock [3] and semi-empirical Parametric
Model 3 (PM3) [4] calculations. The latter method had
substantially more discriminating power than AutoDock
energies [2]. Pérez-Garrido et al. achieved excellent
correlations and cross-validation values with a quantitative
structure-activity relationship (QSAR) model used to
predict complexation of a series of organic molecules with
β-cyclodextrin (β-CD) [5]. Of course, MD simulations have
been employed in order to describe guest–host interactions
and separation phenomena as well [6]. All the above
mentioned models for the simulation of elution orders
concentrate on modelling the interaction between the
compound and the stationary phase of the system, but do
not include the mobile phase explicitly. This also holds for
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MD investigations of chromatographic separation systems
either modelled in gas phase only [7] or incorporating
solvents only implicitly as published recently [6]. However,
to date, many solvents still cannot be modelled implicitly.
This article discusses different aspects of explicit solvent
simulations of the interaction between the compounds and
the stationary phase of HPLC.

On the one hand, the suitability of the underlying force field
and two solvent models will be evaluated. If they are
applicable, the simulated data is assumed to comprise all
necessary information describing the host–guest interaction.
To that effect, only physically meaningful force field terms will
be extracted from the data in accordance with thermodynamic
principles. In the course of comparing three algorithms for the
description of the retention behavior, we will in particular
check energies averaged over MD time ranges against single-
step energies as known from ordinary molecular docking.
Besides, and in contrast to themainstream trend, a high value is
set on consistency in the observations. Appropriate correla-
tions of simulated with experimental results are thought to be
robust regarding the time range under consideration, especially
since we are simulating molecular systems at chemical
equilibrium. In order to illustrate our procedure, we use by
way of example the separation of hexabromocyclododecane
(HBCD) stereoisomers on a permethylated β-CD stationary
phase (β-pmCD).

The compound 1,2,5,6,9,10-hexabromocyclododecane
(HBCD) is used widely as a brominated flame retardant
(BFR) additive in upholstery textiles and polystyrene foams
(EPS, XPS) in building insulation, varying in percentage
between 0.8 and 4 [8–10]. In the face of a world market
demand of about 22,000 metric tons [10], HBCD is one of
the most high volume BFRs. It is regarded as a persistent
organic pollutant (POP) and has been detected increasingly in

environmental niches [11, 12] and biota including humans
[13]. Recent literature on HBCD contamination in marine fish
and in birds’ eggs is comprehensively cited in [14] and [15],
respectively. Furthermore, HBCD and its metabolites are
suspected to cause endocrine disruption due to competition
with thyroxine for binding to the human transthyretin receptor
[16–18]. Technical HBCD consists mainly of three diaste-
reomeric pairs of enantiomers (±)-α-, (±)-β-, (±)-γ-HBCD
with the γ-diastereomer being the main component [19]. In
contrast, the HBCD patterns in biota display predominantly
the α-diastereomer [11–15, 20–22]. As the trace levels of
HBCD in biota display a chiral signature [14, 15, 20–22], the
quantification of enantiomers is of specific interest.

The separation of the six major HBCD stereoisomers
(Fig. 1) by HPLC using a chiral β-pmCD phase and a
water/acetonitrile (ACN) gradient was accomplished from
the technical mixture [20, 23, 24] and various biota
[20–22]. The analytical challenge was described conclu-
sively with the assignment of the absolute configurations of
the enantiomers by Köppen et al. [23]. In short, an
analytical column with permethylated β-pmCD (NUCLE-
ODEX β-PM) as the stationary phase (see Fig. 3) was used
with a water/ACN gradient. The separation of enatiomeric
pairs on this phase is possible due to the chiral nature
of β-pmCD. Because of the hydrophobic character of
HBCD, its interaction with β-pmCD increases in contact with
water. In contrast to water, the less polar co-eluent ACN
reduces guest–host interactions and thus enhances HBCD
elution. The associated chromatogram from [23] is depicted
in Fig. 2. HBCD was taken as example for the novel
approach outlined in the following because it displays a
complex cohort of diastereomers and enantiomers and is
therefore regarded as ideal starting point in terms of
computational challenge and practical significance.

Fig. 1 The six
major 1,2,5,6,9,10-hexabromo-
cyclododecane (HBCD)
stereoisomers: three
diastereomeric pairs
of enantiomers
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Methods

A computational method for the simulation of elution orders
and binding affinities, respectively, should take two aspects into
account. First, the conformational flexibility of the compound
has to be considered since its binding affinity to the stationary
phase or host molecule depends strongly on conformational
changes. Although some 3D-QSAR methods incorporate
classical force field-based 3D representations of the compound
as well [25–27], we decided to use a purely thermodynamic
approach by running MD simulations and extracting force
field interaction energies for computation of elution order.
Also, we avoided methods for the computation of binding free
energies, such as the free energy perturbation [28] or
thermodynamic integration, that require excessive computa-
tional effort [29]. A high-temperature hybrid Monte-Carlo
(HMC) run was used in order to find a suitable starting point
for our simulations. Second, as mentioned before, an explicit
representation of the solvent is desired, because there are
several solvents for which implicit modelling is not possible
in standard MD-software packages. In our investigations, we
applied multi-mode Hamiltonian dynamics simulations.

High-temperature hybrid monte-carlo simulation

Regarding conformational flipping, cyclic compounds includ-
ing HBCD exhibit high energy barriers that are hard to
overcome using ordinary MD simulations. Flipping from one
HBCD conformation to another becomes a rare event even if
sampled with stochastical methods [30] such as HMC [31],
which is known for its efficient sampling of conformational

space [32]. For this reason, initial structures for MD
simulations as used below need to be chosen very carefully
and minimized accordingly. The global conformational
minimum should be suitable for our purpose since it is
expected to have the largest statistical weight. The isomers
were parameterized with the Merck molecular force field
(mmff) [33] and simulated for 100 ps applying the HMC
method at an artificially high temperature of 1,500 K in order
to efficiently sample the conformational space. Each HMC
step included 30 MD steps with a 1.3 fs step size.
Convergence was checked according to Gelman and Rubin
[34] on the basis of five Markov chains. Afterwards, all
geometries of the canonical ensemble were minimized with
the conjugate gradient method [35, 36], and the lowest
energy geometry of all was chosen as the global minimum
conformation.

Multi-mode Hamiltonian dynamics simulation

The β-pmCD crystal structure was retrieved from the
Cambridge Structural Database (CSD) [37] under the ID
COYXET20 [38]. All molecules were parameterized accord-
ing to the generalized AMBER force field (GAFF) [39]
using Antechamber from the AmberTools package v1.4 [40].
Charges were assigned with the am1bcc method [41, 42]
designed to reproduce restrained electrostatic potential
(RESP) charges [43]. Using the Gromacs v.4.0.4 simula-
tion package [44], each isomer was simulated with two
different solvents: once in pure water provided by Amber’s
ffamber_tip3p model [45], which is included in the GAFF-
Gromacs MD interface denoted as AMBER ports [46], and
again in pure acetonitrile [47].

As a starting conformation, HBCD was placed into the
cavity of β-pmCD, superimposing both geometric centers
even though the guest may also interact with the outer face
of β-pmCD. Using the nuclear Overhauser effect (NOE)
along with nuclear magnetic resonance spectroscopy
studies revealed that small hydrophobic and poorly water-
soluble compounds like HBCD prefer to reside within the
cavity of β-CD [48, 49]. MD simulation was performed in
three steps: Initially, the host–guest complex underwent
5,000 steepest descent energy minimization steps if the
maximum force did not reach below 100 kJ mol−1 nm−1

before. During a subsequent 400 ps equilibration phase, all
but the solvent’s atoms were restrained in their positions.
Afterwards, the whole system was simulated for at least
400 ps without position restraints but with constraints on all
bonds according to the LINCS approach [50] allowing a
discrete step size of 2 fs to be set. In accordance with the
HPLC conditions, the temperature of the canonical ensem-
ble was coupled to 303 K by stochastically rescaling atomic
velocities [51]. Interaction energies were computed using
the Gromacs setting PME-Switch on the basis of the

Fig. 2 Separation of the six major HBCD stereoisomers on a chiral
permethylated β-cyclodextrin (CD) stationary phase (β-pmCD) col-
umn. This figure was taken from [23]
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smooth partical mesh Ewald summation [52] for coulomb
potentials with a cutoff at 11 Å, and the shift setting for van
der Waals interactions within a dual range switched after
9 Å and cut off at 10 Å.

A set of 60 initial binding modes per isomer was
constructed according to the icosahedron’s symmetry order
as follows: each pair of two opposing vertices provides one
rotational axis around which the isomer is rotated in five 72°
steps resulting in five binding modes per full circle. Five
further orientations associated with the same axis are gained
after having swapped the two corresponding vertices by a
180° rotation resulting in ten binding modes per axis. Since
there exist five further axes (ten further vertices), each of them
providing ten further orientations after having been rotated
properly, we arrive at a total number of 60 binding modes.
Though this procedure greatly increases computational effort,
we are confident that, in contrast to ordinary molecular
docking algorithms, we will be able to catch the preferential
binding mode(s) (Fig. 3).

Results and discussion

In short, the following steps were performed in order to gain
affinity information for the computation of the chromato-
graphic elution order: global minima of the six main stereo-
isomers were computed and served as initial binding modes
for 60MD simulations per isomer associated with 60 different
orientations within the β-pmCD cavity. Having applied three
strategies for handling various orientations per isomer,
interaction energies between host and guest were computed
from the trajectories’ equilibrium regions, allowing the

relative binding affinities for the six major HBCD stereo-
isomers to be determined.

Computation of global HBCD minima

As depicted in Table 1, the lowest mmff energy values for
each enantiomeric pair were identical, indicating a converged
conformational sampling. Moreover, after thermal isomeri-
zation, the diastereomers displayed an experimental ratio
of α:β:γ=81.3:10.0:8.6 [53], correlating closely with the
order of computed energies listed in Table 1, which represent
most probable geometries within a statistical ensemble.

These and further observations concerning C2-symmetries
of α- and γ-HBCD and minimal energy distributions in
torsional subspaces within each canonical ensemble [30]
reveal that the conformational space was sampled sufficiently.
The crystal structures of α-, β- and γ-HBCD, respectively
[54] were retrieved from CSD under the IDs 633325, 617557
and 633326. An alignment of global minima to the
respective crystals on the atomic level is shown in Fig. 4.
The (+)-β-HBCD geometry matches nearly perfectly, with a
torsional root mean square deviation (RMSD) of 0.1 Å (see
Table 1), whereas (+)-α-HBCD differs slightly from the
crystal. These two diastereomers indicate the high suitability
of the mmff fpr the description of molecular conformations.
No conformational agreement at all was found in the case of
(−)-γ-HBCD. External atomic coordinates were fit to the
crystal with an RMSD of 1.1 Å suggesting similar
geometries. In contrast, the internal (torsional) distance
108.5° reveals a completely different conformation for (−)-
γ-HBCD. This discrepancy might occur due to solvent
artefacts in the crystal upon the crystallization process, or
due to the fact that the crystal structure does not need to
match the global minimum structure.

Simulation performance in water and acetonitrile

A reasonable question concerns the time range of simulation
to be considered for further interaction analysis. Figure 5
shows Matlab-smoothed [by its filtfilt() function] distances
between HBCD and β-pmCD mass centers during simula-
tion in water (left subfigure) in comparison to ACN (right
subfigure). The HBCD orientations shown here were
approved as predominant for the reasons specified below.

Because of the high repulsive forces within the β-pmCD
cavity, all simulations show a rapid, initial increase in the
guest–host distance until an equilibrium is reached after 30–
60 ps in the case of water with only small fluctuations of
about 0.5 Å within the remaining trajectory. On account of
this, the first 80 ps of simulation were omitted when
computing average interaction energies. HBCD runs per-
formed with ACN exhibit inconsistent distances showing
sudden jumps even after 0.5 ns. This observation might be

Fig. 3 β-pmCD (NUCLEODEX β-PM) as stationary phase in HPLC
analysis. The icosahedron in the β-pmCD cavity represents 60
uniformly distributed rotational binding modes of hexabromocyclo-
dodecane providing starting conformations for molecular dynamics
(MD) simulations
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due to a more even damping effect of water, which is much
lighter and appears at a higher molar density in the
surrounding medium than ACN. Mass center distances
averaged over time, orientations and isomers after 400 ps
are significantly larger in ACN than in water (8.0 Å vs
5.2 Å) confirming the hydrophobic character of HBCD and
the assumption that chromatographic separation (interaction
with the stationary phase) is more likely in water, whereas
solubility, and thus, HBCD elution rate, is higher in more
hydrophobic solvents like ACN. Indeed, mean HBCD
interaction energies in pure solvents without β-pmCD were
computed substantially lower for ACN (−170.7 kJ mol−1)
than for water (−148.5 kJ mol−1). However, comparing
absolute energy values describing the interaction of a
compound with two different surrounding solvents requires
caution. Typical low energy modes of (−)-γ-HBCD (smallest
distance) and (+)-β-HBCD (largest distance) isomers within
β-pmCD simulated in water are depicted in Fig. 6. At
equilibrium, about half of each isomers’ shape is surrounded
by C2-and C3-methoxy moieties of β-pmCD glucopyranose
units. Despite this, HBCD interaction is measurable with the
entire cyclodextrin molecule since nearly all intermolecular
carbon distances are below 10 Å.

Optimal binding mode analysis

Sampling the conformational space completely in order to
compute the binding free energy of host-guest complexes at

chemical equilibrium is hindered by high energetic barriers.
This handicap was accomplished by using several (N=60)
binding modes for independent simulations which in turn
raise the question of how to select the optimal one of any
mode i for each isomer. Therefore, three different strategies
Emean, Emin and Eprob have been compared in order to
handle the potential energy Ei (qj) of conformation q at time
step j out of n=160,000 MD steps (after having omited the
first 40,000 steps):
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i2 1;N½ �
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As a first approach (Eq. 1), the lowest of all 60 time-
averaged energies was assigned to Emean. In Eq. 2, the
orientation associated with the lowest energy Emin of all 60
minimal energies was chosen. Finally, all orientations were
taken into account by summing up their time-averaged
energies weighted according to the Boltzmann probability
distribution for canonical ensembles yielding Eprob. Here, β

Fig. 4 Alignment of globally minimized main HBCD conformations to their respective X-ray crystallographic structures. From left to right: α, β,
γ diastereomers

Table 1 Global energy minima
and root mean square deviation
(RMSD) values for the alignment
of simulated optimal conforma-
tions compared to crystal
structures. HBCD 1,2,5,6,9,
10-Hexabromocyclododecane

Stereoisomer Global minimum kJ
mol

� 	
Cartesian RMSD [Å] Torsional RMSD [°]

(–)-α-HBCD 238.7 0.5 30.6

(–)-β-HBCD 249.5 – –

(–)-γ-HBCD 256.7 1.1 108.5

(+)-α-HBCD 238.7 – –

(+)-β-HBCD 249.5 0.1 0.1

(+)-γ-HBCD 256.7 – –
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stands for the inverted product of the gas constant R=
8.31447 J mol−1 K−1 and temperature T=303 K. Clearly,
Emean and Eprob cope with thermodynamic principles since
they incorporate the mean inner energy of statistical
ensembles. In contrast, Emin represents molecular docking
approaches where affinities are estimated on the basis of an
individual preferential binding mode only.

Essential energy contributions

Besides defining strategies for selecting optimal orienta-
tions, those energy terms that contribute considerably to the
correlation between the simulated and the experimental
elution order need to be determined. In a thermodynamic
manner, one would rather use the total inner energy of a
molecular system for the computation of free energy
differences. Due to the high number of water molecules,
the inner energy reveals high fluctuations and is therefore
neither expected to be reproducible nor to correlate well
with the experimental elution order. For this reason, only

the sum of all interaction energies (van der Waals and
electronic terms) of HBCD with its surroundings (solvent
and β-pmCD) was assigned to Ei (qj) in order to compute
the enthalpic part of the free energy. This physically
meaningful approach has already been applied successfully
to the estimation of binding affinities for host–guest systems
as provided by the linear interaction energy (LIE) method
proposed by Åquist et al. [55].

Table 2 shows squared coefficients for the correlation of
the natural logarithm ln(k) of experimental HPLC capacity
factors, k, with the sum of interaction energy terms
computed in accordance with the three strategies described
above. These capacity factors ki ¼ ti � t0ð Þ=t0 had been
derived from respective HPLC retention times ti of isomer i
and the chromatographic dead time t0 depending on all
physical properties influencing the retention time [23].
Taking the natural logarithm of k is justified by thermody-
namic studies of the chromatographic retention behavior
revealing a linear correlation between ln(k) and thermody-
namic quantities such as the inversed temperature, the

Fig. 6 Low energy conformations of (−)-γ-HBCD within the β-
pmCD (represented by its solvent-excluded surface) cavity with a
mass center distance of 3 Å on the left-hand and of (+)-β-HBCD with

a distance of 5.8 Å on the right-hand fetched from the equilibrium
region of an MD simulation with explicit water

Fig. 5 Center of mass distances between HBCD stereoisomers and β-pmCD in water (left) and acetonitrile (right)
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enthalpy and free energy [56, 57]. In order to figure out the
correlation model’s robustness, these coefficients were
averaged over multiple time ranges starting at succeeding
time frames with 20 ps offsets, but all ending at 360 ps.
Additionally, we distinguished between both solvents and
the discriminating power for both the entire set of stereo-
isomers (Iso.) and among enatiomers (Ena.) only. Correlation
for enantiomer-specific separation was computed by

R2 Ena:ð Þ ¼ 1
3 R2

a þ R2
b þ R2

g

� �
.

As a general observation, the coefficients R2 of correla-
tion computed with Eqs. 1–3 do not differ considerably.
However, the choice of the solvent does make a notable
difference. With ACN it was not possible to achieve such a
high corrrelation with any formula. This observation copes
with the experiment since better HBCD separation is
achieved with high water concentrations in the eluent
whereas elevated ACN concentrations reduce separation
but enhance elution of HBCD isomers. The optimal result
for the solvent water is showcased in Fig. 7, where
correlations have been plotted against the starting frame
of the trajectories’ time ranges ending at frame t=400 ps.
We arrived at consistently high squared correlation coef-
ficients equal to 0.8 if choosing Emin or even better at about

0.86 or 0.87 using one out of equations Emean or Eprob,
respectively (left diagram). Enantiomer-specific separation
(right diagram) in water was estimated exactly over nearly
the full range of the MD trajectories by all approaches.
Comparing both thermodynamically motivated optimal
interaction energies Emean and Eprob reveals a sufficient
approximation of the Boltzmann-weighted sum of all
orientations by the preferential orientation with the highest
statistical weight only. These results clearly approve the
robustness of our thermodynamic multi-mode approach at
least for this hydrophobic class of compounds separated on
a stationary phase consisting of host-like molecules. The
system’s thermodynamic equilibrium is well reflected by
coefficients of correlation, which have a consistently high
value independent of the time range under consideration. It
should be noted that the likeliness for randomly chosing the
right order among three independent pairs (enantiomeric
separation of HBCD) is indeed P=0.53=0.125, whereas
guessing the order among six stereoisomers is about 100
times more unlikely with P=(6!)−1=0.0014.

Computation of the HBCD elution order

A quanitative translation of energy values into chromato-
graphic retention times is impossible since these depend on
many parameters such as flow rate, temperature, column
length, density and diameter and pressure. However, the
estimation of the relative order of elution seems an achievable
goal and is the information needed by the analyst. For the
estimation of the elution order, all MD trajectories have been
considered with water as solvent and within the range from
80 ps through 400 ps as justified on the basis of the mass
center distances shown in Fig. 5. Using the least-squares
method, optimal interaction energies from all approaches
were scaled and shifted in order to minimize the deviation
from ln(k). Then, selecting orientations associated with

Table 2 Squared Pearson coefficients R2 (three approaches) for the
correlation of the natural logarithm of experimental capacity factors with
HBCD interaction energies regarding its chemical environment aver-
aged over various time ranges of the MD. The two solvents and the
discriminating power for all isomers (Iso.) and for enantiomers (Ena.)
only can be distinguished. ACN Acetonitrile

Solvent R2 Emeanð Þ
 �
R2 Eminð Þ
 �

R2 Eprob

� �
 �

Iso. Ena. Iso. Ena. Iso. Ena.

ACN 0.64 0.31 0.63 0.11 0.67 0.11

Water 0.86 1.00 0.80 1.00 0.87 1.00

Fig. 7 Squared coefficients for the correlation of HBCD capacity
factors with interaction energies depending on the starting frame and
simulated in explicit water. Three strategies have been compared for

the computation of the elution order for all stereoisomers (left) and for
three pairs of enantiomers only (right)
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optimal mean inner energies Emean of all interaction terms
summed up yields a squared coefficient of correlation R2=
0.87, which is slightly higher than R2=0.86 achieved by the
Boltzmann-weighted approach Eprob, and considerably
higher than R2=0.77 computed with the single-step
approach Emin. These squared coefficients increase to 0.92,
0.91, and 0.82, respectively, if the energies are fitted to k
instead of ln(k). The correlation function 4 is exemplified
using Emean, which contributed the highest correlation:

InðkÞ ¼ �0:0152
mol

kJ
Emean � 0:6614; ð4Þ

which can be rearranged easily in order to obtain an
estimated k instead of ln(k) for comparison with experimental
k values

k ¼ exp �0:0152
mol

kJ
Emean � 0:6614

� �
: ð5Þ

Experimental (HPLC) capacity factors k and elution
orders [23] are listed in Table 3 along with those attained by
fitting optimal interaction energies to ln(k). Emean also
achieved the highest squared rank correlation (according to
Spearman) of estimated and HPLC data R2

S ¼ 0:89 as well

as the highest squared cofficient R2
LOO ¼ 0:72 upon the

leave-one-out (LOO) cross-validation for evaluating the
model, which even amounts to R2

LOO ¼ 0:81 when neglect-
ing the constant term in the correlation Eq. 4. During the
cross-validation, for each isomer, ln(k) was predicted on the
basis of the isomers left over as training set. In detail, the
training set’s computed energies Emean were fitted to the
respective subset of HPLC capacity factors ln(k) using least-
squares, and resulting in a slope and an intercept. In turn, these
coefficients were applied to the mapping of the excluded
isomer’s energy Emean to theoretical capacity factors ln(k).
Afterwards, the squared coefficient R2

LOO was determined by
analogy to R2 using these estimated values of ln(k) for the
correlation analysis instead of Emean.

Figure 8 shows experimental capacity factors k plotted
against those estimated on the basis of Emean. Interestingly,
by far the highest affinity was estimated correctly for (−)-γ-
HBCD, which is indeed eluted a noticeable time period
after all other stereoisomers, as sketched in the chromato-
gram (Fig. 2). Moreover, the smallest difference Δk=0.63
in HPLC capacity factors [and Δln(k), respectively]
between any pair of two stereoisomers is the one between
the (+)-α and (+)-β stereoisomer correlating with the
smallest differences ΔEmean=1.2 kJ mol−1 and ΔEprob=
0.4 kJ mol−1 in optimal interaction energies derived from
both mean inner energy-based methods and possibly
explaining the only failure in the computed elution order
associated with these two isomers. However, enantiomer-
specific separation was estimated correctly with all
approaches in explicit water. It should be noted that
chromatographic separation in pure water or pure ACN
does not yield different orders of elution and does not lead
to separation of all six stereoisomers. Already for this
reason, we cannot expect an exact agreement with the
simulation. Regarding the three strategies used to handle
the multiple binding modes for affinity analysis, statistical
approaches on the basis of mean potential energies turn out
to be more convenient than single-geometry approaches
such as Emin.

Table 3 Simulated optimal interaction energies on a β-pmCD stationary phase along with capacity factors and the corresponding elution order
from both the HPLC experiment [23] and by least-squares-fitting of optimal interaction energies

Diastereomer Interaction energy kJ
mol

� 	
Capacity factor k Elution order

Emean Emin Eprob HPLC Emean Emin Eprob HPLC Emean Emin Eprob

(–)-α-HBCD −200.2 −247.1 −28.6 10.01 10.83 11.42 10.84 1 1 2 1

(–)-β-HBCD −201.9 −241.7 −29.1 10.80 11.11 10.60 11.39 2 2 1 2

(–)-γ-HBCD −231.7 −275.6 −33.5 17.02 17.47 16.92 17.60 6 6 6 6

(+)-α-HBCD −207.1 −255.6 −29.8 12.16 12.02 12.84 12.21 3 4 5 4

(+)-β-HBCD −205.9 −247.6 −29.4 12.79 11.80 11.50 11.74 4 3 3 3

(+)-γ-HBCD −209.3 −253.6 −30.1 13.62 12.43 12.49 12.58 5 5 4 5

Fig. 8 Correlation of amber force field interaction energies (after
least-squares fitting) with HBCD stereoisomers’ capacity factors from
chiral HPLC separation [23]
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Conclusion and outlook

Considerable cross-validated correlations of simulated inter-
action energies incorporating multiple binding modes with the
chromatographic elution order of HBCD stereoisomers have
been achieved using water as solvent and considering all
HBCD interactions with its surroundings, which are dominated
by the hydrophobic Lennard-Jones potential. Considering
especially both mean inner energy-based scoring functions
reveals consistently high correlations of all isomers’ computed
elution order with the experimental order, regardless of the
time range under consideration and yielding an exactly
estimated order of enantiomer-specific elution. Comparing
both mathematical approaches indicates a sufficient approxi-
mation of the Boltzmann-weighted sum of all orientations by
considering the most favorable bindingmode only. On the face
of these results, the presented multi-mode approach could help
with the estimation of binding affinities for host–guest systems
without binding mode information. Our strategy was well
exemplified by simulating the elution order of chromatograph-
ic separation and might be useful whenever experimental
assignment of peaks to stereoisomers is impossible or for
selecting suitable stationary phases for a given mixture of
compounds. In general, binding affinity estimation for other
host–guest systems such as receptor–ligand or enzyme–
substrate complexes, could benefit from systematic consider-
ation of the space of orientations.
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